Anandamide and its metabolites: what are their roles in the kidney?
نویسندگان
چکیده
Anandamide (AEA) is the N-acyl ethanolamide of arachidonic acid, an agonist of cannabinoid and non-cannabinoid receptors in the body. The kidneys are enriched in AEA and in enzymes that metabolize AEA, but the roles of AEA and its metabolites in the kidney remain poorly understood. This system likely is involved in the regulation of renal blood flow and hemodynamics and of tubular sodium and fluid reabsorption. It may act as a neuromodulator of the renal sympathetic nervous system. AEA and its cyclooxygenase-2 metabolites, the prostamides, in the renal medulla may represent a unique antihypertensive system involved in the long-term control of blood pressure. AEA and its metabolites are also implicated as modulators of inflammation and mediators of signaling in inflammation. AEA and its metabolites may be influential in chronic kidney disease states associated with inflammation and cardiovascular diseases associated with hyperhomocysteinemia. The current knowledge of the roles of AEA and its derivatives highlights the need for further research to define and potentially exploit the role of this endocannabinoid system in the kidney.
منابع مشابه
Antioxidant and Protective Effects of Plant Extract against Deltamethrin-induced Oxidative Stress in Liver and Kidney – A Review
Deltamethrin is one of the most commonly used Pyrethroid around the world. Oxidative stress is one of the most deltamethrin toxicity mechanisms. According to many studies, it has been shown that the liver, due to its role, is the main source of accumulation of high concentrations of deltamethrin metabolites. Also the kidney plays a very important role in regulating homeostasis of the body and r...
متن کاملAnandamide metabolism by human liver and kidney microsomal cytochrome p450 enzymes to form hydroxyeicosatetraenoic and epoxyeicosatrienoic acid ethanolamides.
The endocannabinoid anandamide is an arachidonic acid derivative that is found in most tissues where it acts as an important signaling mediator in neurological, immune, cardiovascular, and other functions. Cytochromes P450 (P450s) are known to oxidize arachidonic acid to the physiologically active molecules hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids (EETs), which play i...
متن کاملInvestigation of the therapeutic effect of nicotine and its metabolites on the brain
The effect of Cotinine, active metabolite of nicotine, on Aβ1-42 neurotoxicity was investigated. Cotinine possesses a longer plasma half-life, lower toxicity and it is a partial agonist of the nicotinic acetylcholine receptors (nAChR). Cotinine prolonged the survival of cortical neurons exposed to Aβ1-42. These results indicated that cotinine has a neuroprotective effect by inhibition of the fo...
متن کاملIn silico identification of miRNAs and their target genes and analysis of gene co-expression network in saffron (Crocus sativus L.) stigma
As an aromatic and colorful plant of substantive taste, saffron (Crocus sativus L.) owes such properties of matter to growing class of the secondary metabolites derived from the carotenoids, apocarotenoids. Regarding the critical role of microRNAs in secondary metabolic synthesis and the limited number of identified miRNAs in C. sativus, on the other hand, one may see the point how the characte...
متن کاملGenotype and phenotype of COVID-19: Their roles in pathogenesis
COVID-19 is a novel coronavirus with an outbreak of unusual viral pneumonia in Wuhan, China, and then pandemic. Based on its phylogenetic relationships and genomic structures the COVID-19 belongs to genera Betacoronavirus. Human Betacoronaviruses (SARS-CoV-2, SARS-CoV, and MERS-CoV) have many similarities, but also have differences in their genomic and phenotypic structure that can influence th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Frontiers in bioscience
دوره 8 شماره
صفحات -
تاریخ انتشار 2016